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Abstract-Using the Vainberg's theory of potential operators, variational principles are developed for linear
dynamic theory of viscoelasticity. The Euler equations of the functional developed herein are the governing
field equations, including the boundary and initial conditions as opposed to equivalent set of
integro-differential equations of the Gurtin's method.

1. INTRODUCTION
A large class of boundary-value problems in engineering and mathematical physics can be
replaced by equivalent variational statements which include all the features of the problem, such
as the governing equations, boundary conditions, conditions of constraint and even jump
conditions. Variational principles for initial-value problems have not been derived until the early
1960's, This is primarily due to the fact that the first order operators (a/at) encountered in
initial-value problems, such as in heat conduction, are not self-adjoint with respect to bilinear
forms of the type

(1.1)

Moreover, variational principles (for example, Hamilton's principle in dynamics) constructed
using the bilinear form in (1.1) do not include the initial conditions of the problem. Rosen[l]
developed restricted variational principles for unsteady-state heat transfer, in which the time
derivative of the temperature is kept constant while varying the temperature. The Lagrangian
methods advanced by Biot[2,3] involve quasi-variational principles in which there are no
variational integrals (i.e. the functionals are in varied form).

In 1963, Gurtin[4-6] introduced a noval approach to construct variational principles for linear
initial-value problems. Gurtin's technique involves reducing the given initial-value problem to an
equivalent boundary-value problem using the idea of convolutions. The resulting Euler-Lagrange
equations are integro-differential equations equivalent to the original partial differential
equations, and contain the initial conditions implicitly. The well celebrated papers of Gurtin [4-6]
have led to numerous generalizations and applications [7-9].

Although the convolution technique of Gurtin permits variational formulation of linear
initial-value problems, the resulting Euler equations are integro-differential equations. To
transform these equations back to the partial differential equations, generally some approximate
inversion technique must be used. This introduces additional error into variational methods of
approximation.

The objective of the present paper is to present modified Gurtin's variational principles whose
Euler equations are the governing differential equations of the problem as opposed to equivalent
integro-differential equations of Gurtin's method. The basic step in the derivation of these
variational principles is to choose a bilinear form with respect to which the operator associated
with the problem is potential. Tonti[lO] showed that the first order differential operator is
potential with respect to a convolution bilinear form, and in a recent paper[ll] variational
principles for linear initial-value problems are derived based on Tonti's observation.

Following this introduction, certain preliminary definitions and notations are presented.
Section 3 contains a review of certain elements of the Vainberg's variational theory[l2, 13]. In
Section 4 variational principles for the linear theory of viscoelasticity are presented.
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2. SOME MATHEMATICAL PRELIMINARIES
Let 0 be an open bounded region in three-dimensional euclidean space E3

, and let a0 be the
smooth boundary of O. The closure of 0 is denoted by fi = 0 u aO. Let ao. and ao.. denote
disjoint sets whose union is ao,

ao. u ao.. =ao, ao. () ao.. =4>.

Further, let D be the unit outward normal to the boundary ao, and let the symbol "X" denote the
cartesian product of two sets.

We denote by I = (x .. X2, X3) a material point in the body, and the time is denoted by t. For
simplicity we assume that the material coordinates XI are rectangular cartesian when the body
occupies a reference configuration in E3

•

Convolution. Suppose that' and g are functionsdefiDed on OX[O, to], to < 00, with '(I),.) and
g(I,.) are continuous on [0, to] for each E O. We define the convolution"'*g" of' andg by

(f*gXI, t) = l' '(I, or)g(x, t - or) d'T

which has the following properties:

(a) '*g = g*' (commutativity)
(b) '*g =°implies either' =°or g =°(Titchmarsh's Theorem)
(c) (f*g)*h = '*(g*h) = '*g*h (associativity)
(d) '*(g + h) ='*g + ,*h (distributivity)

(2.1)

(2.2)

We now give some lemmas whose role in this paper is analogous to that of the fundamental
lemma in the calculus of variations. Proofs of these lemmas can be found in [5].

2.1 Lemma. Let' be a sufficiently smooth function on fiX[O, tol and suppose that

In (f*g)(x,t)dx =0, to<oo (2.3)

for every arbitrarily smooth function g(x, t) E OX[O, to] which, toaethcr with aU its space
derivatives, vanishes on aOX[O, to]. Then

,(x, t) =° in nX[O, to].

2.2 Lemma. Let' be suftlciently smooth on aOaX[O, to] and suppose

f (f*gXx,t)dS =0, x E aOa
)"0.,

for every arbitrarily smooth function g(x, t) which vanishes on ao.X[O, to]. Then

,(x, t) = ° (x, t) E ao..X[O, tol.

2.3 Lemma. Let f, be sufficiently smooth on ao.X[O, to] and suppose

f (f.*glln/Xx, t) dS = 0, x E aO.J,o.

(2.4)

(2.5)

(2.6)

(2.7)

for every arbitrarily smooth symmetric tensor-valued function gil which, tOiethcr with aU its space
derivatives, vanishes on aOaX[O, tol. Then

f,(1, t) = ° (x, t) E aO. X[O, to]. (2.8)
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2.4 Lemma. Let f,(x, 0) be sufficiently smooth on n, and sUppose

In f,g,dx, xEO

for every arbitrarily smooth function g, vanishing at t =O. Then

f,(x, 0) = 0 in 0.

3. VARIATIONAL THEORY Of POTENTIAL OPERATORS
Consid~r a nonlinear operator eqIJation of the form

K[u(x, t)] = 0 in fiX[O, to]
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(2.9)

(3.1)

where K is a nonlinear operator. Our primary concern here is to construct variational statements
of (3.1). That is, we wish to construct a functional 1[u] which assumes a stationary value at the
solutions of (3.1). Not all operator equations admit variational formulation. Here we study,
following Vainberg[l2, 13], sufficient conditions for an operator to admit variational formulation.

Variation of operators. Suppose that K is a nonlinear operator mapping a complete n,ormed
linear vector space (Banach space) /fL into another normed linear vector space r. We shall denote
the domain of the operator K by ~(K), and the range by 92(K). Then

11. K( ) d [K( + )]1 -Ii K(u+El1)-K(u)
"" u, 'I • dE U E'I •-0 - .lfJ E (3.2)

is called the Gateaux differential (or variation) of K at u in the directiqn 'I, provided the limit in
(3.2) exists for any.., E ~(K).The di1ferential 8,.K(u, 'I) is also, in general, a nonlinear operator
(it is homogeneous in.." but not always additive). Here we assume that the Gateaux differential is
linear in..,. In this case, we can write

(3.3)

where M(u) is called the Gateaux derivative of K(u) at u.
Variation and gradient of a functional. Since a functional 1(u) on /fL is also an operator, we

can speak of derivative (or variation) of 1 in the same sense as (3.2):

8",1(u, 'I) = lim! [1(u + E'I) - 1(u)] = dd 1(u + E'I )1.-0
.--0 E E

(3.4)

Assuming that there exists a linear Gateaux differential 8,,1(u, 'I) at a point u E ~(1), we can
write

(3.5)

where 81(u) is the (linear) Gateaux derivative of the functional 1 at u. Since 8,,1(u, 'I) is also a
functional, 81(u) is a linear functional with domain ~(1).

H for fixed u E ~(1) the derivative 81(u) is a continuous linear functional, then it can be
extended by continuity to a linear functional on all of /fL. This extension is called the gradient of the
functional 1 at u, and 1(u) is called the potential of the operator K (u).

grad 1(u) = K(u)

Then it follows from the definition of grad 1(u) that

(grad 1(u), 'I) = dd 1(u + 0')I
E .-0

(3.6)

(3.7)
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where (f, u) denotes the valueofthelinearfunctionalf E au'(au' being the dual of au) atu E au.
Potential operators. If an operator j( from qg(Jf) C au into au' is the gradient of some

functional 1(u), Jf is called a potential operator and 1(u) is called its potential. A necessary and
sufficient condition for an operator Jf to be potential is given in the following theorem proof of
which can be found in[l2].

3.1 Theorem. Let Jf be a continuous operator from 0/1 to 0/1' which has a linear Gateaux
differential e5..Jf(u, .,,) at every point u E qg (Jf). Then a necessary and sufficient condition that j(

be potential is that

(e5..Jf(u, .,,), ~) = (e5.,Jf(u, ~), .,,) (3.8)

That is, the linear Gateaux derivative of the operator Jf must be symmetric in ." and ~.

The condition (3.8) of symmetry of the derivative of the operator is necessary-for the field to
be conservative and for a functional to exist. It must be emphasized that the symmetry of an
operator is relative to the bilinear form chosen. In other words an operator may not be potential
with respect to one bilinear form and may be potential with respect to other. The potentiality of
an operator can also be interpreted in an alternate way: if (Jf(u +E.,,), .,,) is continuous in E,
0:5 E :51, for any." is an open convex set w C qg(Jf), then Jf(u) is potential if and only if, for any
polygonal line Lew, the line integral

L(Jf(u), du) (3.9)

is independent of the path of integration (see, Vainberg [12, p. 56]).
Recall from variational calculus that vanishing of the first variation of a functional is a

necessary condition for the functional to assume a stationary value. From (3.6) it is clear that
Jf(u) = 0 is the Euler equation of the functional 1(u). Given a Gateaux differentiable functional
1(u), it is a simple matter to find its gradient. However, in parctice one is often faced with the
opposite situation; namely, given an operator Jf, find a functional such that (3.6) holds. Putting in
other words, given the problem of solving a nonlinear equation of the form (3.1) by a variational
method (such as the finite element method), find an associated functional. Note that, if Jf is a
potential operator, from (3.9) it follows that the potential 1(u) of the operator Jf has the form

1(u) = 1(00) +( (Jf(u), du)

or alternatively,

(3.10)

Thus, for equations represented by potential operators, there exists a functional (unique within a
constant) such that (3.6) holds. This fact, proved by Vainberg[l2], is stated in the following
fundamental theorem.

3.2 Theorem. If Jf is a potential operator, then there exists a functional 1(u) whose gradient is
the operator Jf, and which is given by (3.10).

4. VARIATIONAL PRINCIPLES
Let U/o 'Ylj, CTlj,fi, GljId and 1lj1d denote the components of the displacement vector u, the Green's

strain tensor 'Y, the second Piola-Kirchhoff stress tensor 0', the force vector f, the relaxation tensor
Gand the compliance tensor J, respectively. The equations governing linear theory of viscoelastic
solids are

(i) Strain-displacement relations:

(4.1)
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(ii) Cauchy's equation of motion:
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in nX[O,oo] (4.2)

(iii) Stress-strain relations:
(a) relaxation type

(b) creep type

kI • kI
'Yii (x, t) = Cjkl (X)0' (x, t) +],jkl *0'

(4.3a)

(4.3b)

wherein Eijkl(X) = Gijk/(X, 0), and Cjkl(X)=Jijlc/(x,O). Here it is understood that all the field
variables are functions of (x, t) E nX[O,oo'). To this set we add

(iv) boundary conditions:

(v) initial conditions:

U, = ai, in anuX[O,oo)

T' == O"lnl = t ' on an.. X[O, 00)

Ui(X,O) = di(x), x E fi

au, ­at (x, 0) = v,(x), xE n

(4.4)

(4.5)

(4.6)

(4.7)

where a" t, di and Vi are prescribed functions. The set (4.1H4.3a), (4.4H4.7) can be put into an
operator form by setting

pa 2/at 2 0 I (a a) 0 0 0 0- 2 8im aXj +8jm ax,

0 ((; ijkl *+E ijkl )8
ik
8jl -1 0 0 0 0

p= 1(a a ) -I 0 0 0 0 02 8mj ax, +8m ; aXj (4.8)
0 0 0 0 1 0 0
0 0 0 -1 0 0 0
0 0 0 0 0 0 p
0 0 0 0 0 -p 0

A = {Um, 'Yi/, O'ij; U" Ti
; 'V (4.9)U" u,

r = {pfm; 0,0; t',-ai ; v,,-d,V (4.10)

Here we remark that the first three elements (um, 'Yi/o O'ij) in A are the basic dependent variables,
and the remaining entries are the restrictions of the basic dependent variables to appropriate
domains. Then (4.1)-(4.7) can be expressed in the operator form

K(A)== g)l(A)- r = 8

where 8 = {O, 0, 0; 0, 0; 0, OV is the zero vector.
We introduce the bilinear form

if, g] =10 f f(x, 'T)g(x, t - 'T) dxd'T

(4.11)

(4.12)
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where dx = dx1dxzdx3. We can show that a/at is self-adjoint with respect to the bilinear form in
(4.12). Indeed, we have

where

[ af ] -1 (' Jiat' g - n Jo aT (x, T)g(X, t - T) dxdT

= In [-l' {(x, T) a~ g (x, t - T) dx

+{(x, T)g(x, t - T)I :~J dx

= ( (' f(x, T) ~a g(x, t - T) dxdT +[J, g]oIn Jo - T

= In l' f(x, T) au ~ T) g(x, t - T) dxdT +[J, g]o

_[ ag]- f, at +[J, g ]0

[f, g]o = In {f(x, T)g(X, t - T)}I :=0 dx

(4.13)

(4.14)

Thus, a/at is self-adjoint; it can be easily verified that az/atZ is also self-adjoint. We also
introduce the following notation for convenience:

[f, g Jan = f (' f(x, T)g(X, t - T) dS dT.
an Jo (4.15)

In (4.15){ and g are the restrictions offunctions{ and g defined on OX[O, 00) to the set aOX[O, (0).
Let [I denote the space of functions of the type A = {um, Yib U

ii ; Uj, T1
; UI, Ui}T. We define the

bilinear form

(A.. Az) = [um
l
, um

Z
] +[Y)b Y~] +[u/i, U2;i]

+[u/, unan. +[T1i, TZ
i

] an" +[u/, u;Z]o +[u/, u?]o (4.16)

wherein Aa = {um
a

, y:), Ua
ii

; ut, Ta
i

; ut, utV, a = 1,2. Substituting (4.11) into (3.10), and
carrying out the indicated integration with respect to s, we obtain,

1 [1 ( ii] 1 m+2 2 Ul,i +ui,d, u +2 [T ,Um ]8n"

- [tm, Um]an" -~ rUm, Tm]an. + [12m, T"']an.

+~ [pUm, Um]o - [pVm, Um]o - ~ [pum, Um]o + [pd"" Um]o (4.17)

Here the superimposed dot indicates differentiation with respect to time. Using integration by
parts in time
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and the divergence theorem in space,

[a-jli, Um] = _[a-mi, Umj] +[Tm, Um]an

the functional J(A) in (4.17) can be simplified to
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(4.18)

(4.19)

J(A) = ~ [pum, um]+ [ (J'li, ~ (UI,i +Ui,i) - 'Yli] - [pfm, um]

1 . lild "Id [Tm A ]+2[G *'Ykl +E" 'Ykh 'Y/d - ,Um- Um an.

- [tm
, Um]ana +[p(Um- Vm), Um]o -~ [p(Um - 2dm), Um]o. (4.20)

Thus, (4.20) is a variational statement of the set in (4.1H4.7). That is, J(A) assumes a stationary
value when A is a solution of the set (4.1H4.7).

4.1 Theorem. Let A = {Um, 'Yli, (J'ii; Uit T i; Uit uif E f:! be the solution of (4.1H4.7). Suppose
that we define, for each (x, t)EOX[O, to], the functional J(.) on wcf:! by (4.20). Then the
gradient of J satisfies the condition

grad J(A) == 8J(A) = 8, over w Cf:! (4.21)

if and only if A is a solution of (4.1H4.7).
Proof. Let A= {Um, iiij, ii li ; Um, t m; um, umf be an arbitrary element in f:I. Then the first

variation (or Gautea,x differential) of J is

- d -
8K.J(A, A) = da J(A +aA)la=o

[ au", aum] [1 ( +) -Ii]= Pat' at + 2 Uij Ui.i - 'Yij, (J'

[
ii 1(- + - )_ - ] _ [.1 -]+ (J', 2 Ulj Ui.1 'Yli Pim, Um

1 [G' lild -] 1 [G' lild - ]+2 *'YkI' 'Yii +2 *'Y1d, 'Yii

[
A T-m] [t"'-] +[Eiikl -]- Um - Um, an. - ,Um anu 'Y1d, 'Yli

+ [p(Um - Vm), Um]o +[plIm, Um]o

- ~ [pUm- 2dm, IIm ]o - ~ [PUm, um]0'

Integrating by parts with respect to time and using the divergence theorem, we can write

8K.J(A, A) = [~(Ui.i +Ui.i) - 'Yli, iiii] - [(J'~+ ph - piil, ud

+ [(Giikl *'YkI + Elild'YkI - (J'ii), iiid - lUi - "I, fl]an.

+[T' - t i, udana +[P(Ui - v;), udo- [P(Ui - di), II]o

= (~(A) - r, A). (4.22)

Note that 8K.J(A, A) is linear in A. Hence,

8AJ(A, A) =(M(A), A). (4.23)
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We first prove sufficiency. Suppose that AEgis the solution of (4.1)-(4.7). Then (4.22)
becomes

which implies, in view of (4.23), (4.21).
To prove the necessity ("only if" part), assume that (4.21) holds. Then

8A:J(A,A):=O

for all A such that A +aAE (t) for all real a. That is,

In H(UI,j +ui.d - 'Yli }*U1i dx

-In {O'~l+ pt - pUI}*iii dx

+In {(G/j/<I*'Yki +E1ikl'Yk')- O'iil*'Yii dx

- r {Ui - di}l< t i dS + r {T' - tl}*UI dSJ80M Jaou

+1p{li, - v,}a,I' dx -1 p{u, - d,}J;/ t dx = O.
o .~ 0 .~

In view of Lemmas 2.1-2.4, and the fact that the variations ii(x,O) and d(x,O) are zero, it follows
that A ={u..., 'Yli, 0'6; UI, T I ; Uit u,V is the solution of (4.1)-(4.7). This completes the proof.

Comparing (4.22) and (4.23) we note that

M(A) = ~(A)-r

which shows that ~(A) - r == K(A) is potential.
From the functional in (4.20) we can derive some alternate variational principles. For

instance, assume that the strain-displacement relations (4.1), the stress-strain relations (4.3a), and
the displacement boundary conditions (4.4) are satisfied identically. Then we obtain from (4.20) a
new functional

Jt(A) =! [pum, um J- [pt, ud +! [G'/ki *'Yki +EljJd'YkI, 'YiiJ

- [t', U;]dO" +[P(Ui - v,), u;]o

- ~ [P(Ui - 2d,), lido (4.24)

wherein Gijkl*'Yki := 0'6 and 'Yli =(1/2) (UI,J +Ui.I).
Instead of (4.3a), if the stress-strain relations of the creep type (4.3b) are used, ..~.functional

analogous to (4.20) can be constructed:

K(A) = ~ [PUI, ud dpt, lit] +[O'ii, 'Yli] - ~ [CljJdO'k1, O'liJ

1· kI ij • I t l- 2[Jijk/*O' ,0' J- [UI - U" T lao. - [ ,udao"

+ [P(UI - VI), udo - ~ [p(u, - 2d,), lido (4.25)

Now if the equations of motion (4.2) and the traction boundary conditions (4.5) are assumed to
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be satisfied identically, we derive a new functional from (4.25):

K (A) 1[1' Icl ji] 1[C Icl ji] (' T i ]
I = 2 lilcl *u , U +2 lilclU , U - Uh ao.

+~ [P(Ui - VI), Ui]o +[pdl, udo.
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(4.26)

For quasi-static motion of linear viscoelastic solids, the functional J of (4.20) takes the form

1 . IjIc/ I'+2[G *'Ykh'Yij]-[T,Uj-udao.

-[tm,Um]ao
g

•

Similarly other variational principles can be derived from (4.20) and (4.25).

(4.27)

5. CONCLUSIONS
Using Tonti's[10] convolution bilinear form variational principles are constructed for the

linear dynamic theory of viscoelasticity. A systematic procedure is also presented, following
Vainberg[12,13], for constructing variational principles for potential oPerator equations.The
prime feature of the present method is the use of a convolution bilinear form, which does not
require the Gurtin's transformation of the field equations into equivalent integro-differential
equations. That is, the Euler equations of the functionals derived here are the original partial
differential equations, the boundary conditions, and the initial conditions of the linear dynamic
theory of viscoelasticity. For quasi-static case, the difference between the present method and
the Gurtin's method disappears.

Although the present paper addresses to linear dynamic viscoelasticity equations only, the
procedure given herein can be trivally extended to other initial-value problems. Variational
principles for linear heat conduction are given elsewhere [11]. Application of the present method
to elastostatics, piezoelectricity, hydroelasticity, thermoelasicity, elastodynamics, etc. can be
carried very easily (see Oden and Reddy[14]). However, application of nonlinear initial- and
boundary-value problems is yet to be investigated.
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